The 3rd Seminar on New Trends in Plasma Physics and Solid State Physics

Contributed Papers

Bratislava, Slovakia 4.10.2007

Editors: Peter Papp, Juraj Országh, Ján D. Skalný

VIZUALIZÁCIA MIKROVÝBOJOV V PORÉZNYCH KERAMIKÁCH

Karol Hensel¹, Pierre Tardiveau²

¹Oddelenie fyziky životného prostredia, Fakulta matematiky, fyziky a informatiky, Univerzita Komenského, Mlynská dolina F2, 84248 Bratislava, Slovensko e-mail: hensel@fmph.uniba.sk
²Laboratoire de Physique des Gaz et des Plasmas Université Paris Sud, Orsay, Francúzsko

Mikrovýboje v poréznych keramikách generovaných striedavým zdrojom vysokého napätia boli vizualizované pomocou intenzifikovanej CCD kamery pri rôznej citlivosti a časových škálach. Snímky výboja boli synchronizované s harmonickým signálom aplikovaného vysokého napätia. Pozorovali sa mikrovýboje vo vnútri keramiky ale i bariérový výboj na povrchu keramiky. Zdokumentovaný bol tiež rozdiel medzi mikrovýbojmi generovanými v keramikách s rôznou veľkosťou pórov.

ÚVOD

Nerovnovážna plazma generovaná elektrickým výbojmi pri atmosférickom tlaku má charakter tenkých filamentárnych mikrovýbojov. Vďaka svojmu vysokému chemickému potenciálu sa plazma generovaná mikrovýbojmi využíva pre rôzne environmentálne aplikácie. Účinnosť a selektivitu chemických procesov v plazme je možné zlepšiť ak sa plazma kombinuje s katalyzátorom. Ako vhodná kombinácia plazmy a katalyzátora sa javí generácia plazmy v dielektrických materiáloch, akými sú napr. keramické monolity v tvare včelieho plástu alebo porézne keramiky. Generácia mikrovýbojov v úzkych dutinách a kapilárach rôznych poréznych materiálov, skúmanie ich fyzikálnych vlastností a potenciálu na čistenie výfukových plynov boli cieľom niekoľkých vedeckých prác [1-3]. V našich predošlých prácach sme sledovali fyzikálne vlastnosti mikrovýbojov generovaných v poréznych keramikách pomocou DC [4-5] alebo AC [6] vysokého napätia. Metódy skúmania pozostávali z elektrických a optických meraní použitých na vyhodnotenie efektu veľkosti pórov, výkonu výboj, zloženia plynnej zmesi a jej prietoku na rozvoj a stabilitu výboja. Optické merania zahŕňali štandartnú fotografickú dokumentáciu a optickú emisnú spektroskopiu. Tento článok prezentuje výsledky získané použitím intenzifikovanej CCD kamery. Snímky získané kamerou sú synchronizované so signálom zdroja aplikovaného striedavého napätia v rôznych časových škálach.

EXPERIMENTÁLNA APARATÚRA

Experimentálna aparatúra je znázornená na obr.1. Výbojku tvorila keramika vyrobená zo zmesi Al₂O₃/SiO₂, vložená medzi dvoma mriežkovými elektródami z nereze a umiestnená v kremennej cylindrickej rúre. Veľkosť pórov vybraných keramík bola 10 and 80 µm, polomer a hrúbka keramík bola 31 and 7 mm. Výboj bol generovaný regulovaným zdrojom striedavého vysokého napätia (50 Hz). Napätie na výbojke bolo merané vysokonapäťovou sondou *Lecroy*

Obr.1. Schematické znázornenie experimentálnej aparatúry.

PPE20KV pripojenou k osciloskopu *Lecroy LT374L* (500 MHz, 4 GS/s) a celkový výkon dodávaný zdrojom sme merali pomocou digitálneho wattmetru *Metex 3860M*.

Kamerový systém tvorila digitálna kamera *Atmel Camelia 4M* (b/w, rozlíšenie 2048x2048, veľkosť pixlu 14 µm, expozičná doba 1-2000 ms) a intenzifikátor *Optronics* (expozičná doba 3 ns - 110 ms, spektrálna citlivosť 400-700 nm). Uzávierka a expozičná doba kamery boli synchronizované so signálom zdroja vysokého napätia. Makroskopický charakter výboja pri dlhších expozičných časoch bol zaznamenávaný digitálnym fotoaparátom *Nikon Coolpix 4300*. Snímky výboja boli snímané kolmo na povrch keramík. Experimenty boli realizované v dusíku pri atmosférickom tlaku a izbovej teplote. Celkový prietok plynu bol 1 l/min.

VÝSLEDKY A DISKUSIA

Vizuálny charakter mikrovýbojov generovaných v keramike zachytený bežnou digitálnou kamerou pri expozičnej dobe 1 s prezentuje obr. 2. Obrázok zobrazuje integrovanú emisiu mnohých mikrovýbojov počas danej expozičnej doby. Na získanie informácie o rozvoji mikrovýbojov a ich svetelnej emisie v kratších časových intervaloch bol využitý systém ICCD kamery s nastaviteľnou dobou expozície a citlivosťou.

Obr.3 znázorňuje emisiu mikrovýbojov pozdĺž polovice periódy signálu aplikovaného striedavého napätia. Jednotlivé snímky v sériách (a, b, c) zodpovedajú príslušnej oblasti napäťového signálu znázorneného pod nimi. Série a) a b) znázorňujú svetlo integrované počas 100 expozičných cykloch, zatiaľ čo séria c) je svetlom iba z jedného cyklu. Dĺžka jedného cyklu bola 500 μ s. Zo série a) je zrejmé, že k emisii svetla dochádza v oblasti maxima amplitúdy aplikovaného napätia, kedy vznikajú prierazy vo forme

Obr.2. Fotografia mikrovýbojov v keramike [veľkosť pórov 80µm, dusík, výkon 10 W, uzávierka kamery 1 s].

mikrovýbojov. V oblastiach mimo mikrovýbojov (b, c) je intenzita emisie svetla výbojom podstatne menšia. Svetlo v týchto oblastiach pochádza najmä z emisie bariérového výboja. Maximum svetelnej emisie bariérového výboja je možné pozorovať v oblastiach s najväčšou hodnotou dU/dt.

Na obr.4. je priebeh signálu napätia na výbojke a pod ním detail príslušnej časovej oblasti maxima aplikovaného napätia v ktorej dochádza ku vzniku mikrovýbojov v oblasti. Na spodnom

Obr.3. Obrázky výboja synchronizované so signálom harmonického napätia VN zdroja [veľkosť pórov 80μm, dusík, napätie 15.7 kV, uzávierka kamery 500 μs]. Série: a) citlivosť kamery 500, integrácia 100x, b) citlivosť kamery 600, integrácia 100x, c) citlivosť kamery 760.

Obr.4. Svetlená emisia mikrovýbojov [veľkosť pórov 10µm, dusík, napätie 16 kV, uzávierka kamery 1ms, citlivosť kamery 470].

obrázku súčasne vidno signál uzávierky kamery ktorej dĺžka bola 1 ms. Napravo sa nachádza snímok zodpovedajúci snímok mikrovýbojov. Z porovnania signálu zaznamenaného osciloskopom a snímku zaznamenaného kamerou vidno, že počet napäťových poklesov (ktoré sú dôsledkom prierazu keramiky vo forme mikrovýbojov) zodpovedá počtu emisných bodov na keramike. Z tohto výsledku vyplýva, že distribúcia mikrovýbojov v keramike je náhodná a k následným prierazom nedochádza na tom istom mieste, ale na rôznych miestach. Ďalšími experimen tálnymi meraniami sa súčasne zistilo, že s rastom pre keramiky s väčšou veľkosťou pórov pravdepodobnosť toho, že prierazu dôjde na tom istom mieste rastie. K takémuto efektu

dochádza najmä na okrajoch keramiky (viac ako v strede keramiky) v blízkosti vonkajšieho okraju mriežkových elektród, kde je intenzita elektrického pola najväčšia.

Obr.5. porovnáva emisiu mikrovýbojov v keramikách s rôznou veľkosťou pórov, pri rovnakom napätí a nastaveniach kamery. Z obrázku vidno, že intenzita svetla jednotlivých mikrovýbojov rastie s veľkosťou pórov. Tá je dôsledkom väčšieho priemeru kanálov, amplitúdy prúdových pulzov a tým aj stredného elektrického prúdu mikrovýbojov pri rovnakom aplikovanom napätí.

Fig.5. Porovnanie mikrovýbojov v rôznych keramikách [dusík, napätie ~ 16 kV, uzávierka kamery 1ms, citlivosť kamery 420.

Výskum bol podporený Agentúrou na podporu výskum a výboja projektmi APVT 20-032404 a SK-FR-00506 a projektom Slovenskej grantovej agentúry VEGA 1/3041/06.

REFERENCIE

- [1] M. Kraus, B. Eliasson, U. Kogelschatz, A. Wokaun, *Phys. Chem. Chem. Phys.* 3 (2001) 294.
- [2] N. Blin-Simiand, P. Tardiveau, A. Risacher, F. Jorand, S. Pasquiers, *Plasma Proc. Polym.* 2 (2005) 256.
- [3] N. Jidenko, M. Petit, J.-P. Borra, J. Phys. D: Appl. Phys. 39 (2006) 281.
- [4] K. Hensel, S. Katsura, A. Mizuno, IEEE Trans. Plasma Sci. 33 (2005) 574.
- [5] K. Hensel, Y. Matsui, S. Katsura, A. Mizuno, Czech. J. Phys. 54 (2004) C683.
- [6] K. Hensel, V. Martišovitš, Z. Machala, M. Janda, M. Leštinský, P. Tardiveau, A. Mizuno, *Plasma Process. Polym.* 4 (2007) 682–693.