8th Plasma Science & Entrepreneurship Workshop

08 & 09 November 2021, Prague, Czech Republic

Book of Abstracts

Vision Dynamics

Investigation of the transport of gaseous H₂O₂, HNO₂, NO₂, and O₃ into the bulk water and the electrosprayed microdroplets

M.E. Hassan, M. Janda, Z. Machala

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava, Slovakia

Atmospheric air plasmas in contact with water create so-called "plasma-activated water (PAW)", containing various reactive oxygen and nitrogen species (RONS). These RONS include long-lived species, e.g., hydrogen peroxide (H_2O_2), nitrite (NO_2 -) and nitrate (NO_2 -) anions, and ozone (O_3), and other short-lived species. PAW is effective in killing and inactivating various microorganisms, having potential applications in biomedicine [1] and agriculture [2]. Reactive species in PAW (H₂O₂, NO₂- and NO₃-) have the antimicrobial capacity and can promote seed germination and plants growth. PAW is the outcome of plasma-liquid interaction, where gaseous RONS created by plasma are transported into the water. The solubility of the gas species in liquids under the equilibrium conditions is given by Henry's law solubility coefficient (K_H). Gaseous H₂O₂ and HNO₂ dissolving in water have K_H: ~10³ and 10^{-1} mol/m³ Pa, respectively, while K_H of NO₂ and O₃ are much lower: ~10⁻⁴ mol/m³ Pa. Thus, the solubility of the gaseous RONS varies markedly and even if their gas phase concentrations are similar, the achieved concentration for each species dissolved in the aqueous phase is significantly different. In this work, the transport of gaseous H_2O_2 , HNO_2 , NO_2 , and O_3 into the bulk water and the electrosprayed (ES) microdroplets is investigated. Gaseous H₂O₂, HNO₂, NO₂, and O₃ species are provided by several external sources. Air containing ~ 100 ppm of H₂O₂ or HNO₂ is achieved by bubbling through a vessel with 9.8 M H₂O₂ or 20 mM HNO₂ solution, respectively. 250 ppm NO₂ is obtained from a pressure tank by mixing with air. O₃ generator is used to make O₃, which is mixed with air to get ~450 ppm of gaseous O₃. UV-Vis spectroscopy colorimetric methods are used for the chemical analysis of the dissolved species (H_2O_2 , O_3 , NO_2 - and NO_3 -) in the aqueous phase. In the gas phase, the concentration of H₂O₂and O₃ is measured using electrochemical gas sensors. For HNO₂ and NO₂, the UV-Vis absorption spectroscopic technique is used.

We found that the solvation of the gaseous H_2O_2 , HNO_2 , NO_2 , and O_3 into water is enhanced by the increasing gas-water interface surface area obtained during the ES process. compared to the transport into the bulk which has a fixed surface area regardless of the water volume. H_2O_2 was solvated in water with 4 orders of magnitude more efficiently than O_3 , despite the 7 orders of magnitude larger Henry's law coefficient. This is because of the insufficient amount of gaseous H_2O_2 next to the gas-water interface area: H_2O_2 is completely depleted from the gas, unlike O_3 molecules [3]. HNO₂ is well solvated into the water, making aqueous NO_2 -, with 3 orders of magnitude higher efficacy than O_3 , which corresponds well with the ratio of HNO_2 and O_3 Henry's law coefficients. While NO_2 is solvated in water also making aqueous NO_2 -, with 2 orders of magnitude higher efficacy than O_3 despite similar Henry's law coefficients. Our results provide a comparison of the highly soluble H_2O_2 with the medium soluble HNO_2 and $Water VO_2$ and V_3 gaseous species that can lead to a better understanding of the transport mechanism of gaseous RONS generated in the plasma into the water and will enable optimization of the plasma liquid interaction systems.

This work was supported by Comenius University grant UK/118/2021

- [1] Machala et al., J. Phys. D. Appl. Phys. 52, 034002 (2019)
- [2] Kučerová et al., Appl. Sci. Vol. 11, 1985 (2021)
- [3] E. Hassan et al., Water 13, 182 (2021)

Investigation of the Transport of Gaseous H₂O₂, HNO₂, NO₂, and O₃ into the Bulk Water and the Electrosprayed Microdroplets

Mostafa Elsayed Hassan, Mário Janda and Zdenko Machala

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava,

Slovakia

Introduction and Motivation

- Atmospheric air plasmas in contact with water create "plasma-activated water" (PAW) solution, which contains various reactive oxygen and nitrogen species (RONS) e.g., H₂O₂, NO₂, NO₃, and O₃ [1].
- PAW has potential applications in biomedicine and agriculture [2,3].
- PAW results from plasma-liquid interaction, where gaseous RONS created by plasma are transported into water.
- Our motivation is to better understand the transport mechanism of various plasma gaseous RONS into the bulk water and electrosprayed (ES) water microdroplets.
- The solubility of the gas species in liquids under equilibrium conditions is given by Henry's law solubility coefficient (K_H) [4].
- A comparison of highly soluble H2O2 with medium soluble HNO2 and weakly soluble O3, NO2, and NO gaseous species is presented here. HNO2, NO2, and NO transported into water lead NO2⁻ ions.

Fig 1. Schematic of the experimental setup: studying Transport of gaseous H₂O₂, HNO₂, O₃, NO₂ and NO into the electrosprayed (ES) water microdroplets

- Air/H2O2 (~100 ppm) or air/HNO2 (~100 ppm) is created by bubbling air through a vessel with 9.8 M H₂O₂ or 20 mM HNO₂ solution, respectively.
- Diluted output from O₃ generator is used to make air/O₃ (~450 ppm).
- Air/NO2 (~250 ppm) and N2/NO (~600 ppm) are provided by pressure tanks.
- In the gas phase, the concentration of $\rm H_2O_2, \ O_3,$ and NO is measured by electrochemical gas sensors. For HNO_2 and NO_2 , the UV-Vis absorption spectroscopic technique is used.
- UV-Vis spectroscopy colorimetric methods are used for the quantitative analysis of the dissolved H2O2, O3, and NO2 (key product formed in the liquid phase after solvation of HNO2, NO2, and NO) in the aqueous phase.
- Fast (60 fps) and High-Speed (25,000 fps) cameras with exposure time 25 and 7.5-20 µs, respectively, are used to visualize the electrosprayed water microdroplets and analyse their surface area.

Acknowledgments

This work was supported by

- Slovak Research and Development Agency APVV-17-0382 and SK-PL-18-0090
- Comenius University grants: UK/118/2021, UK/317/2020, and UK/325/2019

Literature

[1] Bruggeman, P.J. et al., Plasma Sources Sci, Technol, 25, 053002 (2016) Bruggeman, P.J. et al., Plasma Sources Sci. Technol. 25, 05
Qi Machai, Z. et al., J. Phys. D. Appl. Phys. 52, 034002 (2019)
Kučerová, K. et al., Appl. Sci. Vol. 11, 1985 (2021)
Sander, R. Armos, Chem. Phys. 15 4399–881 (2015)
Janda, M. et al., J. Appl. Phys. 129 (2021)
Janda, M. et al., Appl. Sci. Vol. 11, 7053 (2021)
Janda, M. et al., Appl. Sci. Vol. 11, 7053 (2021)

More details can be found in our recently published papers. Scan the below QR codes [6] [5]

Results

- Total surface area of ES water microdroplets (Fig 2) is increased with applied voltage and water flow rate [5]
- Solvation into ES microdroplets is enhanced significantly compared to solvation into bulk water (Fig 3).
- Solvation of H_2O_2 (µ mol) is limited with respect to K_H due to its fast depletion from the gas. Solvation of O₃ (n mol) is limited due to its slow diffusion into water microdroplets [6].
- Solvation of $HNO_2 \, (n \mbox{ mol})$ which is ionized to H^* and NO_2^- once entering water, corresponds well with its Henry's law coefficient [7].
- $\mathrm{NO}_{\!\scriptscriptstyle 2}\,(n$ mol) seems better soluble than predicted by its ${\it K}_{\!{\it H}^{\!\scriptscriptstyle 2}}$ which may be because it is ionized into NO2 once entering water and as ion NO2 is quickly diffused into the volume.
- NO (n mol) also seems better soluble than predicted, especially at higher voltages (11 and 13 kV) where a weak corona discharge may be ignited: OH radicals are generated and interact with NO to produce the highly soluble HNO₂.
- Solubility is not determined purely by Henry's law, as indicated by comparison of relative K_H coefficients normalized to K_H of O₃ compared with values derived from our experimental results (see table below).

Fig 2. Microdroplets photographs at water flow rate: 500 µL/min

Fig 3. The amount of dissolved H2O2 , O3 and NO2 from (HNO2, NO2, and NO) in bulk vs ES

Species	~ <i>K_H</i> (mol/m³ Pa)	Relative K_{H} normalized to K_{H} of O ₃	Experimental values normalized to O ₃
H_2O_2	10 ³	107	104
HNO ₂	10-1	10 ³	10 ³
NO ₂	10-4	1	10 ²
NO	10-5	10-1	10
O ₃	10-4	1	1

Conclusions

The obtained results can lead to a better understanding of the transport mechanism of gaseous RONS generated in the plasma into the water and will enable optimization of the plasma liquid interaction systems and tuning of PAW chemical composition.