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DC Microdischarges Inside Porous Ceramics

Karol Hensel, Shinji Katsura, Member, IEEE, and Akira Mizuno, Fellow, IEEE

Abstract—The hybrid plasma-catalyst system represents an ef-
fective method for the pollutant abatement from car exhaust. A
problem, however, is a limited volume of the generated plasma, and
a pressure drop across the catalyst layer. A new approach on the
generation of microdischarges inside porous ceramic materials is
reported. The results show that the stable generation of microdis-
charges can be observed only in ceramics with specific pore size.

Index Terms—Car catalyst, nonthermal

plasma, porous ceramics.

microdischarge,

TMOSPHERIC pressure nonthermal plasmas provide

many uses in environmental, biological, and other appli-
cations, including abatement of atmospheric pollutants from
air and car exhaust. The plasmas are typically generated by
streamer and pulsed coronas, and various types of dielec-
tric or ferroelectric barrier discharges. These discharges are
characteristic by their nonequilibrium character and a large
amount of thin filamentary channels called microdischarges.
The chemical effect can be enhanced if the plasma is combined
with a catalyst. The hybrid plasma—catalyst system is very
effective for gas exhaust abatement applicable even at low
temperatures. The drawback is, however, a limited volume of
the generated plasma and a pressure drop across the catalyst
layer. This problem can be solved by using a honeycomb-like
catalyst, which has a large surface area, acceptable pressure
drop, and is preferred for practical use. The plasma generation
inside a honeycomb monolith and its use for the abatement
of nitrogen oxides and hydrocarbons have been reported in
[1], [2]. These experiments show that the plasma uniformity
inside the narrow holes, as well as the insulation failure of the
ceramic wall, appear to be a serious problem. Therefore, we
used porous ceramic material instead of honeycomb to generate
the discharge plasma. Our goal was to determine the conditions
of a stable and uniform discharge generation with respect to the
pore size of the ceramic material.

Our experimental setup consisted of ceramics placed between
two stainless steel mesh electrodes. The ceramics were sintered
from alumina and cordierite and their diameter and thickness
were 28 and 3 mm, respectively. The pore sizes of the ceramics
were 0.8, 15, and 90 pm. The experiments were performed in
dry air flowing perpendicular to the ceramics layer. The dis-
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charge photographs were taken by the digital camera (Nikon,
E4300).

Direct current (dc) regulated high-voltage power supply of
positive polarity was used to drive the discharge reactor. Al-
though alternating current (ac) or pulsed high-voltage power is
typically needed if a dielectric barrier is present, we observed
a successful generation of a pulsed discharge using dc excita-
tion voltage. The pulsed behavior resulted from the phenom-
enon known as the back corona discharge [3]. The back corona
is observed when a dielectric layer of high resistivity covers
the electrode surface. In such case, the charge emitted from the
electrode is accumulated on the dielectric surface and intensi-
fies the electric field across the dielectric layer. If the amount
of the charge accumulated on the surface becomes critical, the
breakdown through the dielectrics occurs. This breakdown is
observed as fine discharge channels called microdischarges. The
regular pulsed discharge is a result of repeated charging and sub-
sequent breakdown of the dielectric. The effective generation
of microdischarges inside porous ceramics utilizing the back
corona discharge is possible, however, only for a specific pore
size and discharge power.

In Fig. 1, the photographs of the discharge using porous ce-
ramics with pore sizes of 0.8 pym (top row) and 15 pym (bottom
row) are shown. The pictures demonstrate the development of
the discharge visual character at increasing power. The exposure
time for all photographs was 8§ s.

When using ceramics with very small pores (0.8 ;sm), the dis-
charge developed on the dielectric surface (surface discharge).
The breakdown through the dielectric did not occur and no dis-
charge inside the porous ceramic was observed. The discharge
current increased with the voltage relatively slowly (less than
10 pA/kV), as can be seen from the I-V characteristic (Fig. 2).
Raised discharge power only caused the area covered by the sur-
face discharge to expand.

When using ceramics with larger pore size, the change of
the discharge mode was observed. It occurred either above
the threshold voltage (with 15-pum pores) or at the discharge
onset (with 90-pm pores), as shown in Fig. 2. The slope of the
I-V characteristic suddenly increased as the surface discharge
“leaked into” the ceramics and microdischarges inside the ma-
terial were observed. Typical blue color of the surface discharge
changed to the intense white emission of randomly distributed
microdischarges. The amplitude of the current pulses was
high compared to the surface streamers. The frequency of the
pulses, which increased with the mean discharge current but
appeared to be independent of the pore size, was on the order
of kilohertz. The obtained results are in a good agreement with
the estimates from the Paschen’s law, which determines the
breakdown voltage as a function of the pressure-gap length
product. In atmospheric pressure air, the Paschen’s minimum
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Fig. 1. Discharge generation using porous ceramics. The photographs represent the discharge development using ceramics with pore sizes of 0.8-pzm (upper row)
and 15-pm (lower row). With 0.8 p#m pores, surface discharge mode is established, while with 15 gm pores, microdischarges are generated inside the ceramic
material.
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